Multilingual Syntactic-Semantic Dependency Parsing with Three-Stage Approximate Max-Margin Linear Models

نویسندگان

  • Yotaro Watanabe
  • Masayuki Asahara
  • Yuji Matsumoto
چکیده

This paper describes a system for syntacticsemantic dependency parsing for multiple languages. The system consists of three parts: a state-of-the-art higher-order projective dependency parser for syntactic dependency parsing, a predicate classifier, and an argument classifier for semantic dependency parsing. For semantic dependency parsing, we explore use of global features. All components are trained with an approximate max-margin learning algorithm. In the closed challenge of the CoNLL-2009 Shared Task (Hajič et al., 2009), our system achieved the 3rd best performances for English and Czech, and the 4th best performance for Japanese.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Multilingual Dependency-based Syntactic and Semantic Parsing

Our CoNLL 2009 Shared Task system includes three cascaded components: syntactic parsing, predicate classification, and semantic role labeling. A pseudo-projective high-order graph-based model is used in our syntactic dependency parser. A support vector machine (SVM) model is used to classify predicate senses. Semantic role labeling is achieved using maximum entropy (MaxEnt) model based semantic...

متن کامل

Multilingual Dependency Learning: Exploiting Rich Features for Tagging Syntactic and Semantic Dependencies

This paper describes our system about multilingual syntactic and semantic dependency parsing for our participation in the joint task of CoNLL-2009 shared tasks. Our system uses rich features and incorporates various integration technologies. The system is evaluated on in-domain and out-of-domain evaluation data of closed challenge of joint task. For in-domain evaluation, our system ranks the se...

متن کامل

A Joint Syntactic and Semantic Dependency Parsing System based on Maximum Entropy Models

A joint syntactic and semantic dependency parsing system submitted to the CoNLL-2009 shared task is presented in this paper. The system is composed of three components: a syntactic dependency parser, a predicate classifier and a semantic parser. The first-order MSTParser is used as our syntactic dependency pasrser. Projective and non-projective MSTParsers are compared with each other on seven l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009